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Amino acids in neurobiology: Neuroprotective and neurotoxic aspects of
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General Introduction
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The 7th International Congress on Amino Acids and
Proteins (August 6–10th, 2001) went back to Vienna,
Austria, to be chaired again by Professor G. Lubec
(Dept. of Paediatrics, Vienna University, Vienna,
Austria) and, as in previous occasions, the meeting
was a forum for discussing about the role of amino
acids in the CNS.

The meeting took place in the framework pro-
vided by the publication of the working drafts of the
human genome by the International Human Genome
Sequencing Consortium, led by F. Collins (2001) and
Venter et al. (2001), on February 15th, and 16th, 2001,
respectively.

The finding that only 26,000 to 38,000 genes are
found in the draft versions of the human genome is
especially challenging for neuroscientists, since a
human brain contains some 1011 neurons and even
more glial cells, implying that not genes (or nucleic
acids), but proteins and amino acids are the “executive
molecules” of life. Thus, we have to look beyond
genomes to proteomes to demystify the functions of
the proteins coded by the genes.

All possible proteins participating in cellular func-
tion are encoded in the genome sequences, but a single
gene can encode multiple different proteins, by (i)
alternative splicing of the mRNA transcript, (ii) vary-
ing translation start or stop sites, or (iii) frameshifting,
translating a different set of triplet codons. Proteins
undergo important changes after being built from their
gene templates, being modified by processes like
phosphorylation, glycosylation, acetylation, ubiqui-
nation, farnesylation, and adapt further by changing
their location within the cell, being cleft into active

and/or inactive fragments, adjusting their stability, or
changing what they bind to. A single protein may
then be involved in more than one process, and
similar functions may be carried out by different
proteins, or by their products, peptides and amino
acids. These three components are essential for meta-
bolic pathways, required for the development and
function of the central nervous system (CNS), precur-
sors for the synthesis of several neurotransmitters,
and neurotransmitters themselves. Furthermore, drug
targets are almost always proteins.

Protein dysfunctions are associated to several dis-
eases. So called “proteopathies” can be found, by ex-
ample, in Alzheimer’s disease, where aggregation of
�-amyloid together with plaque associated proteins,
functioning as pathological chaperones, are promi-
nent. In Huntington’s disease there is genetic defect,
resulting in CAG triplets yielding polyglutamine con-
taining proteins. In both cases, protein faulty expres-
sion and/or malfunctioning lead to cell death and the
characteristic symptoms.

Thus, in the wonderland of complete sequences,
the future still belongs to proteomics, identifying and
quantifying proteins and their products, and ultimately
determining their function, and identifying pathologi-
cal conditions in which proteins are involved.

Glutamate and γ-aminobutyric acid (GABA) repre-
sent the major neurotransmission systems in the brain.
Glutamate has long been discussed as an exclusively
excitatory transmitter. However, inhibitory functions
via adenylate cyclase coupled metabotropic receptors
have recently been described. Thus glutamate needs
now to be considered as an excitatory, as well as in-
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hibitory transmitter. GABA is still only an inhibitory
signal, producing hyperporalisation, upon binding to
GABAergic receptors. Glutamate and GABA are re-
sponsible of the main work, while the other systems
could be considered as followers or modulators of the
work performed by the main neurotransmitters.

Glutamate is ubiquitously distributed, apart of its
stimulatory functions it induces toxicity when the
overflow of glutamate is increased following metabolic
disturbances, or when glutamate receptors are over-
stimulated by endogenous or exogenous substances.
Glutamate is also a precursor of several metabolic
steps, included that for the synthesis of GABA. Over-
flow of glutamate together with its action is regulated
by a potent transport carrier system, to neurons and
astrocytes, and a complex and sophisticated set of
receptors, whose number and functions are still largely
unexplored.

As shown in Fig. 1, several glutamate receptor
types have been described and already cloned and
sequenced, representing two large families, iono-

tropic and metabotropic receptors. Among the
ionotropic receptors, several subgroups have been
identified, encoded by at least six gene families,
as defined by sequence homology, scattered over
numerous chromosomes (see Dingledine et al., 1999).
(i) N-methyl-D-aspartate (NMDA) R1 (NR1) and
NMDAR2A-2D (NR2A-D), belonging to the NMDA
receptor subtype (comprising three gene families);
(ii) the GluR1-GluR4 to the α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionate (AMPA) receptor sub-
type (a single gene family), and (iii) the GluR5-7, KA1
and KA2 to the kainate (KA) receptor subtype (two
gene families).

The metabotropic receptors (mGluR) have been
sub-classified according to pharmacological affinities,
similarities of primary sequences, and/or second
messenger systems (Houamed et al., 1991; Tanabe
et al., 1992). Thus, (i) the mGluR1 and mGluR5 sub-
types are most potently stimulated by quisqualate,
have extensive sequence homology, and increase
phosphatidylinositol turnover by activating phos-
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Fig. 1. The glutamate receptor families are schematically represented. Several receptor types have been characterised, cloned and
sequenced (the identified genes are in parentheses). The transmembrane topology of glutamate receptors comprises three domains (M1,
M3, and M4), plus a cytoplasm-facing re-entrant membrane loop (M2) (see Dingledine et al., 1999). The ionotropic family comprises the N-
methyl-D-aspartate (NMDA), α-amino-3-5-methyl-4-isoxalepropionate (AMPA) and Kainate (KA) subfamilies. Dingledine et al. (1999)
favours a tetramic protein model for the NMDA receptor, consisting of two NR1 and two NR2 subunits, modulating Ca2� and Na�

conductance. AMPA receptors are also assembled by four subunits (GluR1-4), either alone or in various combinations, their functional
properties depending on the subunit composition. AMPA receptors possessing the GluR2 subunit exhibit little Ca2� permeability, while
receptors lacking GluR2 show high Ca2� permeability (Burnashev et al., 1996). The efficiency of NMDA receptors for transporting Ca2� is
approximately four times than that of AMPA receptors, probably because the pore of NMDA channels has multiple sites for Ca2�, while
that of AMPA receptor channels has only a single site (Wollmuth and Sakmann, 1998). The stoichiometry of the KA subfamilies is still
unspecified, but appears to be complex, showing under certain circumstances some, but low, calcium permeability (see Burnashew et al.,
1996). As for NMDA, AMPA receptor activation can be potentiated by various phosphokinases, including PKA, PKC, and calcium/
calmodulin kinase II. AMPA and KA can be permeable to Ca2�, but are tonically blocked at resting membrane potentials by cytoplasmic
polyamine ions. Eight metabotropic glutamate receptor subtypes (mGluR) have been cloned from mammalian brain, classified into three
subfamilies; group I, coupled to increases in phosphoinositide hydrolysis (IP3), and groups II and III coupled to inhibition of adenylate
cyclase (AC)
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pholipase C; (ii) the mGluR2 and mGluR3 subtypes
are activated selectively by (2S,1�R,2�R,3�R)-2-
(2,3-dicarboxycyclopropyl) glycine (DCG-IV) and 1-
aminocyclopentane-1S,3R-cyclopentanedicarboxylic
acid (ACPD), but only weakly by quisqualate, and
inhibit cyclic AMP synthesis, and (iii) the mGluR4
mGluR6, mGluR7 and mGluR8 subtypes are po-
tently activated by L-2-amino-4-phosphonobutyric
acid (L-AP4), have a similar primary sequence
and inhibit forskolin-stimulated cAMP formation
(Nakanishi, 1992).

The ionotropic receptor subtypes exist in conjunc-
tion with various mGluR subtypes, but selective loca-
tion in different neuronal compartments of the brain
has also been described. Thus, while the NR1 subunit
mRNA is ubiquitously expressed in almost all neuro-
nal cells throughout the brain, the NR2A subunit
is mainly expressed in neocortex, especially in layer
V (Monyer et al., 1994), a region where many of
the cortico-striatal projection pyramidal neurons are
localised. Furthermore, NR2A and NR2B mRNA
(Watanabe et al., 1992), as well as NR1 mRNA, and
NR2A- and NR2B-like immunoreactivity (LI) are
present in the neostriatum (Laurie and Seeburg,
1994; Standaert et al., 1994). In the majority of the
cases, NR1 and NR2A and NR2B mRNA are
observed in medium-sized spiny neurons containing
the neuropeptide enkephalin (Laurie and Seeburg,
1994; Landwehrmeyer et al., 1995; Standaert et al.,
1994), but also, although at lower levels, in
somatostatin and cholinergic interneurons, which in
addition contain NR2D mRNA (Landwehrmeyer et
al., 1995). GluR1, and GluR2/3 receptor subtypes are
expressed by medium-sized spiny efferent neurons
and by parvalbumin positive interneurons (Chen et al.,
1998), whereas the GluR4 subtype is expressed only
by interneurons (Bernard et al., 1997; Kwok et al.,
1997; Martin et al., 1993). Furthermore, high and inter-
mediate levels of GluR2- and GluR3-LIs are found in
enkephalin and calbindin positive neurons (Chen et
al., 1996; Ghasemzadeh et al., 1996; Sato et al., 1993).
Intense GluR5-7-LIs are present throughout the neos-
triatum, but without a clear neuronal segregation
(Chen et al., 1996). However, GluR5 mRNA is highly
expressed in the islands of Calleja, ventral pallidum
and pars compacta of the substantia nigra, and GluR7
mRNA is highly expressed in the ascending nigro-
striatal and mesolimbic dopaminergic neurons
(Bischoff et al., 1997). Furthermore, there is evidence
indicating extensive co-localization of GluR2 and

GluR3 and GluR5-7 subunits (Ghasemzadeh et al.,
1996).

mGluR3 mRNA is highly expressed in the neocor-
tex and neostriatum, both in neuronal and glial cells
(Ghasemzadeh et al., 1996; Ohishi et al., 1993; Petralia
et al., 1996; Tanabe et al., 1993). mGluR5 is found at
high levels in the neostriatum (Ghasemzadeh et al.,
1996), mainly on enkephalin, substance P containing
neurons and on interneurons and strionigral neurons
of the dorsolateral region (Testa et al., 1994, 1995;
Kerner et al., 1997; Tallaksen-Green et al., 1998).
There is evidence for an intense mGluR5-LI in the
neocortex and neostriatum, with both a pre- and post-
synaptic location (Romano et al., 1995). A similar pre-
and postsynaptic distribution has been reported for
mGluR2- and mGluR3-LI (Petralia et al., 1996). In-
deed, it has been shown that the intensity of mGluR2
and GluR3 immunoreactivity is decreased following
decortication, suggesting a location on cortico-striatal
terminals (Testa et al., 1998).

Due to its ubiquitous occurrence in the brain,
glutamate and its receptors are crucially involved in
several disease states. Overstimulation of glutamate
receptors destroys the neurons bearing these receptors
(excitotoxicity). Excitotoxicity plays a role in acute
neurodegeneration (Kostrzewa, 1998; Sonsalla et al.,
1998) and glutamate receptor-antagonists are promis-
ing drugs to reduce excitotoxic damage (Danysz et al.,
1998).

Glutamate plays also a crucial role in several basal-
ganglia diseases, especially in Parkinson’s disease.
Several lines of evidence indicate direct and indirect
interactions between dopamine and glutamate in
the basal ganglia of mammals (Calabresi et al., 1997;
Meltzer et al., 1997; Zigmond et al., 1998; Chéramy
et al., 1998; Herrera-Marschitz et al., 1998). NMDA-
receptor-antagonists have psychomotor stimulant
activity and effectively counteract parkinsonism symp-
toms in rats and monkeys (Carlsson and Carlsson,
1989; Schmidt, 1998; Ossowska et al., 1998; Starr,
1998). NMDA receptor-antagonists may also prevent
the development of dyskinesias (Verhagen Metman et
al., 1998).

It has been shown in primates that dopamine de-
afferentation induces an overactivity of glutamatergic
neurons of subthalamic and cortico-striatal pathways
(Bergman, 1990). Furthermore, while striatal neurons
discharge spontaneously at a very low rate, their
firing is increased following a 6-hydroxydopamine
(6-OHDA) lesion. This increase in firing is blocked
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by AMPA, but not by NMDA receptor antagonists
(Calabresi et al., 1993).

A unilateral 6-OHDA lesion can produce short- and
long-lasting changes in ionotropic and metabotropic
receptor subtypes (Wüllner et al., 1994a,b). In our
laboratories, we have found that a 6-OHDA lesion
produces specific changes in several cortical and
striatal neuron populations expressing markers for
amino acid synthesis (Lindefors et al., 1989), and in
a subpopulation of striatal neurons that is labelled
with antibodies raised against aspartate (Pettersson
et al., 1996). Furthermore, the dopamine D1 receptor
agonist SKF 38393 (Setler et al., 1978) reduces
the expression of glutamate receptor subtypes
mGluR1,3,5 and NR1, but increases the expression of
NR2B levels, indicating a complex interaction be-
tween dopamine and excitatory amino acid systems.
The role of metabotropic glutamate receptors in Par-
kinson’s disease is further investigated, promising new
therapeutic opportunities (Wolfarth et al., 2000).

Other disease states in which glutamate receptors
play a crucial role are schizophrenia (Ossowska et al.,
2000; Svensson and Mathé, 2000), epilepsy (Rogawski,
2000) and addiction (Tzschentke and Schmidt, 2000).

The neurotransmitter role of aspartate is not yet
clarified (see Herrera-Marschitz et al., 1997, 1998).
Whenever glutamate is detected in the extracellular
space of brain (Herrera-Marschitz et al., 1996), peri-
pheral (Engidawork et al., 1997) tissue, guinea pig
cochlea (Jäger et al., 2000), or even in organotypic
cultures (Herrera-Marschitz et al., 2000), aspartate is
also detected, although at lower concentrations. As
glutamate, aspartate is released in an α-latrotoxin-
dependent manner (Herrera-Marschitz et al., 1996),
but, while both glutamate and aspartate levels are in-
creased following the uptake blocker dihydrokainic
acid, only glutamate levels are increased by L-trans-
pyrrolidine-2,4-decarboxylic acid (Herrera-Marschitz
et al., 1996), a selective glutamate uptake blocker
(Bridges et al., 1991), suggesting a differential regula-
tion. Furthermore, while glutamate has high affinity
for all types of glutamate receptors, aspartate is
selective for the NMDA receptor subtype, although
with lower affinity than glutamate (Watkins and
Evans, 1981; Patneau and Mayer, 1990). Using an an-
tiserum raised against aspartate conjugated to key-
hole-limpet hemocyanin, aspartate-positive neurons
have been occasionally seen in the neostriatum of the
rat (Snyder et al., 1993). We have found that the
amount of aspartate-positive neurons is increased by

metamphetamine, L-DOPA or SKF 38392 treatments,
in particular when a D1-agonist is administered to ani-
mals with a unilateral 6-OHDA lesions (Pettersson
et al., 1996). We have discussed the possibility that this
striatal aspartate system is up-regulated under chronic
L-DOPA treatment in Parkinson’s disease, overstimu-
lating NMDA-receptors and excitotoxicity (Herrera-
Marschitz et al., 1998).

The participants of the Neurobiology Satellite of the
Amino Acid congress in Vienna addressed the func-
tional aspects of glutamate from different viewpoints.
In Chapter I, the authors invited by Antonello Novelli
and R. Andrew Tasker discuss the issue of excito-
toxicity, a term originally proposed by Olney (1969),
on the basis of studies demonstrating that L-glutamate
is highly toxic to the brain. The papers describe basic
research on the cellular basis of excitotoxicity, stress-
ing the potential for new therapeutic strategies.

Amino acids are multifactorial biological entities,
with neurotoxic and neuroprotective actions, accord-
ing to cellular health status and intracellular milieu.
This is the main issue of Chapter II, led by Richard
M. Kostrzewa, John P. Kostrzewa and Ryszard Brus,
where the authors provide insight into the newest
developments on amino acids and novel approaches
for treating Parkinson’s disease and other neurode-
generative disorders. Viewed as a biologically inert
amino acid in 1900, L-DOPA was later shown to be
a metabolic precursor to the neurotransmitter
dopamine, and ultimately as a consequence of O.
Hornykiewicz’ pioneering clinical studies in the 1960s
L-DOPA has become the drug-of-choice for treating
Parkinson’s disease (Hornykiewicz, 2002). Often de-
bated as a substance that accelerates the progression
of Parkinson’s disease, Kostrzewa et al. (2002) discuss
the more-likely neuroprotective role of L-DOPA,
which actively sequesters and inactivates reactive
oxygen species including hydroxyl radical (Kostrzewa
et al., 2000). In contrast, Kochman et al. (2002) focus
on tyrosine, a metabolic precursor of L-DOPA, as
playing a major role in regulating intracellular me-
tabolism via the tyrosine radical intermediary which is
also a potential cellular neurotoxin. Again, ongoing
cellular activity has a major influence on the outcome
of amino acid effects. Archer et al. (2002) describe
studies on what is expected to be the next break-
through in the treatment of Parkinson’s disease,
namely use of NMDA antagonists to enhance L-
DOPA antiparkinsonian actions while simultaneously
reducing the incidence of motor dyskinesias. That is-
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sue is reinforced in Chapter III. Amino acid metabo-
lism, gone ‘astray’ is the theme of the study by Walker
et al. (2002), demonstrating that abnormal protein for-
mation may catalyse further cellular deterioration –
mechanism that could be important in Alzheimer’s
disease (senile plaques and tangles) and Parkinson’s
disease (Lewy bodies). These series of studies high-
light a central duplicitous role for amino acids and
proteins as active players in neurobiology and in neu-
ropathological processs.

In Chapter IV and V, the authors invited by
Thomas Tzschentke, and Stanislaw Wolfarth and
Krystyna Ossowska, respectively, discuss glutamater-
gic mechanisms in different disease states. In Chapter
IV, focus is given to glutamate-dopamine interactions
associated to neuropsychiatric disorders, but also to
drug dependence. NMDA and AMPA antagonism has
a role in nociception, but kainate receptors play also
a role in inflammatory and neuropathic pain (Chizh
et al., 2002). In Chapter V, the authors discuss recent
evidence dealing with drugs active on metabotropic
receptors, which may be also useful in the therapy of
neuropsychiatric disorders.

In Chapter VI, Hari Sharma and co-workers pro-
pose that injury to the CNS induces a series of complex
neurochemical events that are progressive in nature,
leading to widespread cellular and molecular altera-
tions causing damage and/or cell death. Trauma to
the CNS produces a breakdown of the microvascular
permeability, leading to extravasation of serum pro-
teins into the brain extracellular fluid compartment.
Glutamate also contributes to membrane damage,
probably via formation of free radicals and nitric ox-
ide, as well as other neurochemical agents regarded as
endogenous neurodestructive agents. However, apart
of neurodestructive agents, a large number of other
compounds are also released in the CNS following
trauma, including immunomodulators, growth hor-
mone and growth factors, acting as endogenous
neuroprotective agents.

In Chapter VII, Olga Golubnitschaja and her co-
authors present evidence demonstrating that molecu-
lar imaging of ischemia and angiogenesis provides
insights into mechanisms of disease initiation, allow-
ing early non-invasive diagnostic and preventive
treatments.

The Satellite on Neurobiology has been again an
opportunity to discuss new developments related to
the role of amino acids in the CNS, and novel tar-
gets for therapeutic strategies. Therefore, the Editors
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